Flood Risk Mapping using LIDAR, SE NB Climate Change Action Fund

Tim Webster & Edward MacKinnon Applied Geomatics Research Group

Project Manager, Réal Daigle

- Project Team
- Université de Moncton
- University of New Brunswick
- Mount Allison University
- Centre of Geographic Sciences (AGRG)
- Dalhousie University
- La Dune de Bouctouche
- Province of New Brunswick
- Environment Canada
- Natural Resources Canada
- Parks Canada
- Department of Fisheries and Oceans
- Public Safety and Emergency Preparedness Canada
- Government of Canada's Climate Change Impacts and Adaptation Program

sud-est du Nouveau-Brunswick

- Beaubassin Planning Commission
- Kent Planning Commission

http://atlantic-web1.ns.ec.gc.ca/slr/

Storm Surge + Sea Level Rise

LIDAR Unit

LIDAR uses laser pulses, fired from an airborne platform, to determine and record the elevation of the ground integrated through the Time Interval Meter (TIM)

- GPS P-code is used to position the aircraft
- Inertial Reference System (IRS or IMU) is used to measure the attitude of the aircraft (pitch, yaw, roll).
- TIM used to record pulse 2 way time and scan angle (point spacing controlled by pulse rate, scan rate and forward speed).
- Target position latitude, longitude, ellipsoidal height

LIDAR Post Processing

- Differential processing of carrier phase GPS data from the ground and airborne units. Aircraft track plot can be generated at this time.
- Laser point coordinate determination from the eight data elements (aircraft XYZ and attitude from the IMU output, scanner angle and range from the TIM). The points are transformed into WGS-84 latitude and longitude or UTM.
- Point analysis is performed, classifying them into terrain or other objects.
- Accuracy analysis. Determination of systematic positioning errors in the points. Use overlap areas and GCPs as reference.

- Narrow non-divergent beam (18-25 cm footprint)
- NIR wavelength less sensitive to aerosols
- Reflectors: good-vegetation, poor-water/wet snow
- Measure different returns: first, last, both, intensity
- Active sensor so less requirement for fair weather
- Higher probability of reaching ground in leaf-off conditions (especially first return sensors)
- Dense vegetation or smooth surface (mudflats) increase overlap between flight lines for good coverage (shadow and specular reflection)

Project Chronology: LIDAR Acquisition

- Nov. 2002 mission cancelled poor weather, snow
- May 2003 LIDAR coverage prior to leaf emergence
- Fall 2003 mission with new LIDAR system cancelled technical problems
- Spring 2004 remaining areas acquired prior to leaf emergence with new multi-return system

Validation

"Z must be within an average 30 cm of measured points"

- Guaranteed only on flat hard open surface = road
- GPS points (ellipsoid and orthometric heights)
- Overlay GPS with LIDAR ground points (radius)
- Overlay GPS with LIDAR ground surface
- Compare Z value from GPS and LIDAR

Ground Validation Equipment

- Base and rover RTK system, 10 km range; Total station for under the canopy surveying
- Setup Base over HPN monument, RTK on Pole & vehicle mount

Cap Pele Block Validation Results

Cormierville: addition of waterfront structures

in the ground DEM

Shediac – Pointe du Chene Wharf

Ground DEM – Flood Risk Maps

- Ground DEM used to generate flood risk maps
- Water levels based on historic storm surge events (Jan. 2000) and future sea level rise
- SLR Worse case: 70 cm/100 yr (50 global + 20 subsidence)
- SLR moderate: 50 cm/100 yr (30 global + 20 subsidence)
- Resolve vertical datum issues (chart vs geoid MSL)
- DEM flooded from the ocean
- Low lying Inland areas must have free connection with ocean
- 3 flood levels generated plus other products

Service NB digital ortho series

Jan. 2000 storm surge 2.55 m above MSL

Jan. 2000 storm surge + 100 years sea level rise (0.5m/100 yrs estimate)

Jan. 2000 storm surge + 100 years sea level rise (0.7m/100 yrs estimate)

Combined flood levels

Jan. 2000 event

Jan. 2000 event

Jan. 2000 event

Impact to infrastructure, \$\$

Flood Depth Maps

Flood Animation 5 m ASL

Spring 2004 data

 New LIDAR system for Terra RS capable of measuring 1st and last returns and Intensity on alternating returns

Conclusions

- LIDAR requires planning, ground validation, intensive GIS processing
- Need P-code GPS in order to validate accuracy
- LIDAR ideal for modeling storm surges of 1-2 m
- NB Orthophotos compliment LIDAR DSM/DEM
- Remainder of NB polygons acquired 2004
- Terra using a new multi-return system
- Intensity of return may be a useful product
- Flood modelling complete for 2003 data
- Economic and ecosystem impact analysis to follow

Acknowledgements

- Funding CCAF, AIF, and CFI
- Fieldwork support by AGRG students
- All CCAF partners