Geomatics Acronyms and Abbreviations

Using acronyms and abbreviations is commonly practiced in the Geomatics industry and most of the time people just assume that everybody else knows what every acronyms and abbreviation stands for. Well that is obviously not the case most of the time and over the years I have created myself a little digital cheat-sheet of geomatics acronyms and abbreviations that I use with my work in my writing.

Converting between UTM, MTM and LAT/LONG

Canadian using a UTM map

Geographic coordinate systems enable us to spatially locate features on the Earth using specified set of two dimensional numbers. The coordinates of each feature represent the horizontal position (and sometimes vertical position when elevation is available) of it and one of the most commonly used coordinates is Geographic with values of latitude, longitude. However many different coordinate systems can be used to map the same area depending on various factors such as map extent, scale, end user etc. Therefore we often find in Geomatics that we can have data from different coordinate systems that we need to use together spatially in one reference system.

I am sure that most of us have run into times when we have features that have defined coordinates of one system that we need to use with a different one. (E.g. your map is in UTM (Universal Transverse Mercator) but you have been given GPS points in Lat/Long).

If you ever find yourself in need of quickly getting values converted from Geographic to UTM / MTM (Modified Traverse Mercator) or UTM / MTM to Geographic then here is a free online geographic coordinate convertor tool that I often use provided by Canadian Spatial Reference System

Real Time Kinematic (RTK) Surveying Guidelines

Over the past decade Real Time Kinematic (RTK) surveying with Global Navigation Satellite Systems (GNSS) has become common practice in geomatics. RTK surveying can allow people to achieve relative positioning with centimetre (cm) precision, however there are several important factors that need to be considered and thus a need for a good guide of best practices …

Color Shaded Relief Models

A color shaded relief (CSR) utilizes chromo stereoscopic techniques to help emphasize the depth of the Z dimension from traditional shaded relief models that already portray the presence of an elevation difference. Using carefully edited …

Canadian GIS and Geomatics Resources

Canadian GIS and Geomatics Resources is an extension of my web site that I started back in 2005 after I noticed that there was a real need to have one good place on the web to help find Canadian geospatial resources. The site helps provide others with …

House of Cards Music Video

Always cool to see Geomatics technology used for non traditional geomatics uses!

Here Radiohead’s new music video was not created with any traditional video cameras but instead they used 3D LIDAR scanning technology.

Actual Radiohead Music Video:

Making the Music Video:

Remote Sensing

Remote sensing is merely the science of acquiring information about a surface without physically being in contact with it. It involves the use of technical instruments or sensors to record reflected or emitted energy and then processing, analyzing, and applying that information to determine the spectral and spatial relations of distance objects and materials.

Remote SensingThis is possible due to the fact that the examined objects (such as vegetation, buildings, water, air masses etc.) reflect or emit radiation in different wavelengths and intensities according to their current condition. Modern remote sensing typically involves digital processes but can also be done with non-digital methods.

Probably the most common example of remote sensing is an aerial photograph but there are probably hundreds of applications related to remote sensing ranging from space-borne satellites to under-ground geophysical systems. It has become a major component in the evolving Geomatics industry. In order to generate maps for GIS, most remote sensing systems expect to convert a photograph or other data item to actual measurable distance on the surface. However, this almost always depends on the precision of the instrument that is being used to capture the data. For example, distortion in an aerial photographic lens can cause severe distortions when photographs are used to measure ground distances. Using sophisticated software like PCI OrthoEngine can convert the photograph into an ortho photo which can be used to measure ground distances.

In order to coordinate a series of observations, most sensing systems need to know where they are, what time it is, and the rotation and orientation of the instrument. High-end instruments now often use positional information from satellite navigation systems. The rotation and orientation is often provided within a degree or two with electronic compasses.

The resolution determines how many pixels are available in measurement, but more importantly, higher resolutions are more informative, giving more data about more points. However, large amounts of high resolution data can clog a storage or transmission system with useless data, when a few low resolution images might be a better use of the system.

Like I mentioned earlier examples of remote sensing are very numerous. I have over the past decade and have used the many projects that I have been involved with along with actual examples of my work to help illustrate the principals of the various topics covered on the web site. I have included basic overviews for each along with images, presentations, papers and links to other related resources.

Examples of Remote Sensing

Remote Sensing Links

Color Shaded Relief Models – Cap Pele, New Brunswick

Color Shaded Relief Models of Cap Pele, New Brunswick Color Shaded Relief Models of Cap Pele, New Brunswick

The two images above represent artificial three dimensional perspective views perspective views from different points of origin featuring color shaded relief models that were created from high resolution LIDAR digital surface models as part of a LIDAR flood modeling graduate research project.

The study area for the project consisted of the coastal Gulf Shore region of southeastern New Brunswick from Kouchibouguac National Park south to Jourimain Island (location of the Confederation Bridge). The coastal zone of New Brunswick is a picturesque fishing region that boasts several kilometers of sandy beaches with some of the warmest salt water temperatures north of Virginia.